Happy/Sad Ball Lesson Plan

Amount of time Demo takes: 5-6 mins.
Try this at home!

Materials
- Chem stand with crossbar (stand base, upright pole, crossbar, clamp)
- Four happy and sad balls (2 on strings)
- Blocks (1 with happy face, 1 with sad face)

Set-up instructions
1. Make sure that the chem stand is set up with the crossbar and upright forming a “t”.
2. Tie the happy and sad balls attached to strings to the crossbar one on either side of the upright.
3. Ensure that both balls are tied to hang at the same height, just below the top the blocks. Place the sad ball with the sad face block and the happy with the smiling block.
4. Make sure that the blocks’ faces are towards your audience.

SAFETY! Safe demo!

Lesson’s Big Idea
- These polymer balls look similar, but they behave differently. They demo the conservation of momentum in elastic and inelastic collisions.

Instructional Procedure
1. Start off by asking the students which has more force involved: sticking or bouncing.
2. Use the two unstrung balls to explain the difference between happy and sad balls (below). Then, ask them which ball they would expect to make the block fall over.
3. After they make their predictions, lift the balls high enough such that when they hit, the happy one knocks over the board and the sad one does not.
4. Repeat a couple of times (if needed) and explain.

Background Information

- A happy ball is a ball that bounces while a sad ball does not (illustrate by dropping them side-by-side on the tabletop). These polymer balls look similar but they behave differently.
- This lesson is about momentum changes in a collision and how total momentum must be conserved. A misconception is that the collision will take less force to bounce off (elastic) than to stick together (inelastic). This isn’t true because bouncing involves a larger total force to both stop the current motion and reverse it.
- Looking at each ball’s momentum before and after the collision will show this. Both balls have the same mass and were released from the same height, meaning that at the point just before impact they have the same momentum. After the collision the sad ball has stopped up against the board, meaning that its momentum is now zero.
- In the case of the happy ball, it bounces away, meaning that it now has a “negative” (opposite-direction) velocity compared to when it was going in. The total change can be represented as:

\[m v_{(old)} + m v_{(new)} = \text{(total change of the block)} \]

where \(m \) is mass and \(v \) is velocity

So, the happy block will have a greater change in momentum due to the conservation of momentum.

- The greater the change in momentum that the balls undergo, the greater the force on them must be (greater impulse). By Newton’s Third Law, we can also say that this relatively large force from the ball exerts a relatively large force on the block, and vice-versa.

Clean Up
• Be sure to disassemble the stand and gather all four of the balls.

References
• Conservation of Linear Momentum, Happy-Sad Ball Website, Impulse

Next Generation Science Standards
• K-5
 o K-PS2
 o 3-PS2-1
• 6-8
 o MS-PS2-1/2
• 9-12
 o HS-PS2-3